CENTER FOR autonomy

Autonomous Drifting with 3 Minutes of Data via Learned Tire Models Franck Djeumou, Jonathan Goh, Ufuk Topcu, and Avinash Balachandran

The central problem

Why autonomous drifting?

 Assist drivers to regain vehicle control when facing the unexpected

Why is it challenging?

- Modeling tire forces becomes theoretically and empirically hard
 - Nonlinearities
 - Need special facilities to fit tires only, not the full interaction
 - Can we learn tire models directly from driving data?
- How to control?

 \mathbf{f}

ch

Π

0

σ

Solution

Our deep tire models with physics knowledge

Neural ODE-based tire models

Key idea: Write the force dynamics as a slip-varying second order neural ODE

Neural ExpTanh: A new family of tire models

Key idea: Intuit a function that satisfies the conditions on the second order ODE dynamics

e.g., in tr	ne combined slip regime, comput	te α, σ, κ from venicle state. Then,
feat = $[r, V, \beta, \mu \bar{F}_z]$	1. Define networks inputs	feat = $[r, V, \beta, \mu \bar{F}_z]$
$[\kappa_1^{\theta}, F_0^{\theta}, G_0^{\theta}] = \mathrm{NN}_3^{\theta}(\mathrm{feat})$	2. Inflection point and initial conditions of ODE	$(a_i^{\theta})_{i=0}^5 = \mathrm{NN}^{\theta}(\mathrm{feat})$ 2. Paran
$[s_1^{\theta}, s_2^{\theta}] = \mathrm{NN}_4^{\theta}(\alpha, \sigma)$	3. Distribution of total force	$[s_1^{\sigma}, s_2^{\sigma}] = \mathrm{NN}_4^{\sigma}(\alpha, \sigma)$
$\dot{F}_{tot}^{\theta} = G_{tot}^{\theta}, \ z = [\kappa, F_{tot}^{\theta}, G_{tot}^{\theta}, \kappa_{1}^{\theta}]$ (1) $\dot{G}_{tot}^{\theta} = \begin{cases} -\exp\{NN_{1}^{\theta}(z, \text{feat})\} \text{ if } \kappa \leq \kappa_{1}^{\theta} \\ \exp\{NN_{2}^{\theta}(z, \text{feat})\} \text{ otherwise} \end{cases}$	4. Total force dynamics. The derivative is wrt slip	$ExpTanh^{\theta}(z) = a_0^{\theta} + \left(a_1^{\theta} + a_2^{\theta}e^{-a_3^{\theta} z }\right) tar$
$F_{\text{tot}}^{\theta}, _ = \text{ode}\big((1), [\kappa_0^{\theta}, \kappa], [F_0^{\theta}, G_0^{\theta}]\big)$	5. Total force via integration	$F_{\rm tot}^{\theta}(\kappa,{\rm feat}) = {\tt ExpTanh}^{\theta}(\kappa)$
$F_y^{\theta} = \frac{s_1^{\theta} F_{\text{tot}}^{\theta}}{\sqrt{(s_1^{\theta})^2 + (s_2^{\theta})^2}}, \ F_x^{\theta} = \frac{s_2^{\theta} F_{\text{tot}}^{\theta}}{\sqrt{(s_1^{\theta})^2 + (s_2^{\theta})^2}}$	6. Longitudinal and lateral forces	$F_y^{\theta} = \frac{s_1^{\theta} F_{\text{tot}}^{\theta}}{\sqrt{(s_1^{\theta})^2 + (s_2^{\theta})^2}}, \ F_x^{\theta} = \frac{s_2^{\theta} F_x^{\theta}}{\sqrt{(s_1^{\theta})^2}}$

Keisuke: GPS, IMU, computer-controlled steering, throttle, clutch, braking, .

Scenario: Nonlinear model predictive control (MPC) for autonomous drift using the learned tire models

- Manually collect 3 minutes of data
- Learn tire models
- Return on the track to drift

MPC: Track a pre-computed trajectory while following a sideslip profile

 $c_{\text{end}}(x) = 10(\dot{e} + e)^2 + 10((\dot{\beta} - \dot{\beta}^{\text{ref}}(s_N)) + 2(\beta - \beta^{\text{ref}}(s_N)))^2$

Black box tire forces models do not generalize

Red points: Rough estimate of tire forces at states in the driving dataset

 $[F_{xf}(x,u)]$ $F_{yf}(x,u)$ $= "(M(x, u))^{-1} \dot{x}"$ $F_{xr}(x,u)$ $F_{vr}(x,u)$

Blue points: Learned force model at a subset of points in the dataset

Black curve: Randomly pick r, V, β in dataset and evaluate learned force by sweeping slip angle

We need to incorporate some physics knowledge in the learning!

Learning to autonomously drift with a Toyota Supra

What do we know from tire fundamentals?

Informally speaking, we want the learned models to satisfy:

- S-shape characteristic
- Curve inflection points
- Friction limits: The maximum force is limited by a given (or learned) peak force $\overline{\mu F_z} = \overline{\mu} m g$, where $\overline{\mu}$ encodes any available knowledge on the road friction coefficient

Slip angle: $\alpha = \frac{V \sin \beta \pm dr}{V \cos \beta}$ Slip ratio: $\sigma = \frac{r_{\omega}\omega - V}{V}$ Total slip: $\kappa = \sqrt{(\tan \alpha)^2 + \sigma^2}$ Total force: $F_{tot} = \sqrt{(F_x)^2 + (F_y)^2}$

d: COG to wheel axis distance $r_{\rm o}$: Wheel radius

